ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.03799
32
59

Tracking Multiple Vehicles Using a Variational Radar Model

10 November 2017
A. Scheel
Klaus C. J. Dietmayer
ArXivPDFHTML
Abstract

High-resolution radar sensors are able to resolve multiple detections per object and therefore provide valuable information for vehicle environment perception. For instance, multiple detections allow to infer the size of an object or to more precisely measure the object's motion. Yet, the increased amount of data raises the demands on tracking modules: measurement models that are able to process multiple detections for an object are necessary and measurement-to-object associations become more complex. This paper presents a new variational radar model for tracking vehicles using radar detections and demonstrates how this model can be incorporated into a Random-Finite-Set-based multi-object filter. The measurement model is learned from actual data using variational Gaussian mixtures and avoids excessive manual engineering. In combination with the multiobject tracker, the entire process chain from the raw measurements to the resulting tracks is formulated probabilistically. The presented approach is evaluated on experimental data and it is demonstrated that the data-driven measurement model outperforms a manually designed model.

View on arXiv
Comments on this paper