ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.02879
22
20

LatentPoison - Adversarial Attacks On The Latent Space

8 November 2017
Antonia Creswell
Anil A. Bharath
B. Sengupta
    AAML
    OOD
ArXivPDFHTML
Abstract

Robustness and security of machine learning (ML) systems are intertwined, wherein a non-robust ML system (classifiers, regressors, etc.) can be subject to attacks using a wide variety of exploits. With the advent of scalable deep learning methodologies, a lot of emphasis has been put on the robustness of supervised, unsupervised and reinforcement learning algorithms. Here, we study the robustness of the latent space of a deep variational autoencoder (dVAE), an unsupervised generative framework, to show that it is indeed possible to perturb the latent space, flip the class predictions and keep the classification probability approximately equal before and after an attack. This means that an agent that looks at the outputs of a decoder would remain oblivious to an attack.

View on arXiv
Comments on this paper