ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.02718
37
14

Curve-Structure Segmentation from Depth Maps: A CNN-based Approach and Its Application to Exploring Cultural Heritage Objects

7 November 2017
Yuhang Lu
Jun Zhou
Jing Wang
Jun Chen
Karen Smith
Colin Wilder
Song Wang
ArXivPDFHTML
Abstract

Motivated by the important archaeological application of exploring cultural heritage objects, in this paper we study the challenging problem of automatically segmenting curve structures that are very weakly stamped or carved on an object surface in the form of a highly noisy depth map. Different from most classical low-level image segmentation methods that are known to be very sensitive to the noise and occlusions, we propose a new supervised learning algorithm based on Convolutional Neural Network (CNN) to implicitly learn and utilize more curve geometry and pattern information for addressing this challenging problem. More specifically, we first propose a Fully Convolutional Network (FCN) to estimate the skeleton of curve structures and at each skeleton pixel, a scale value is estimated to reflect the local curve width. Then we propose a dense prediction network to refine the estimated curve skeletons. Based on the estimated scale values, we finally develop an adaptive thresholding algorithm to achieve the final segmentation of curve structures. In the experiment, we validate the performance of the proposed method on a dataset of depth images scanned from unearthed pottery sherds dating to the Woodland period of Southeastern North America.

View on arXiv
Comments on this paper