ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.02194
19
132

On Derandomizing Local Distributed Algorithms

6 November 2017
M. Ghaffari
David G. Harris
Fabian Kuhn
    OOD
    FedML
ArXivPDFHTML
Abstract

The gap between the known randomized and deterministic local distributed algorithms underlies arguably the most fundamental and central open question in distributed graph algorithms. In this paper, we develop a generic and clean recipe for derandomizing LOCAL algorithms. We also exhibit how this simple recipe leads to significant improvements on a number of problem. Two main results are: - An improved distributed hypergraph maximal matching algorithm, improving on Fischer, Ghaffari, and Kuhn [FOCS'17], and giving improved algorithms for edge-coloring, maximum matching approximation, and low out-degree edge orientation. The first gives an improved algorithm for Open Problem 11.4 of the book of Barenboim and Elkin, and the last gives the first positive resolution of their Open Problem 11.10. - An improved distributed algorithm for the Lov\'{a}sz Local Lemma, which gets closer to a conjecture of Chang and Pettie [FOCS'17], and moreover leads to improved distributed algorithms for problems such as defective coloring and kkk-SAT.

View on arXiv
Comments on this paper