ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.01024
43
1

SPARK: Static Program Analysis Reasoning and Retrieving Knowledge

3 November 2017
Wasuwee Sodsong
Bernhard Scholz
Sanjay Chawla
ArXiv (abs)PDFHTML
Abstract

Program analysis is a technique to reason about programs without executing them, and it has various applications in compilers, integrated development environments, and security. In this work, we present a machine learning pipeline that induces a security analyzer for programs by example. The security analyzer determines whether a program is either secure or insecure based on symbolic rules that were deduced by our machine learning pipeline. The machine pipeline is two-staged consisting of a Recurrent Neural Networks (RNN) and an Extractor that converts an RNN to symbolic rules. To evaluate the quality of the learned symbolic rules, we propose a sampling-based similarity measurement between two infinite regular languages. We conduct a case study using real-world data. In this work, we discuss the limitations of existing techniques and possible improvements in the future. The results show that with sufficient training data and a fair distribution of program paths it is feasible to deducing symbolic security rules for the OpenJDK library with millions lines of code.

View on arXiv
Comments on this paper