ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.11386
17
2

Parametrizing filters of a CNN with a GAN

31 October 2017
Yannic Kilcher
Gary Bécigneul
Thomas Hofmann
    GAN
ArXiv (abs)PDFHTML
Abstract

It is commonly agreed that the use of relevant invariances as a good statistical bias is important in machine-learning. However, most approaches that explicitly incorporate invariances into a model architecture only make use of very simple transformations, such as translations and rotations. Hence, there is a need for methods to model and extract richer transformations that capture much higher-level invariances. To that end, we introduce a tool allowing to parametrize the set of filters of a trained convolutional neural network with the latent space of a generative adversarial network. We then show that the method can capture highly non-linear invariances of the data by visualizing their effect in the data space.

View on arXiv
Comments on this paper