ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.10994
29
7

Conceptual Text Summarizer: A new model in continuous vector space

30 October 2017
M. Khademi
M. Fakhredanesh
S. Hoseini
ArXivPDFHTML
Abstract

Traditional methods of summarization are not cost-effective and possible today. Extractive summarization is a process that helps to extract the most important sentences from a text automatically and generates a short informative summary. In this work, we propose an unsupervised method to summarize Persian texts. This method is a novel hybrid approach that clusters the concepts of the text using deep learning and traditional statistical methods. First we produce a word embedding based on Hamshahri2 corpus and a dictionary of word frequencies. Then the proposed algorithm extracts the keywords of the document, clusters its concepts, and finally ranks the sentences to produce the summary. We evaluated the proposed method on Pasokh single-document corpus using the ROUGE evaluation measure. Without using any hand-crafted features, our proposed method achieves state-of-the-art results. We compared our unsupervised method with the best supervised Persian methods and we achieved an overall improvement of ROUGE-2 recall score of 7.5%.

View on arXiv
Comments on this paper