ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.10301
21
3

Probability Series Expansion Classifier that is Interpretable by Design

27 October 2017
S. Agarwal
Corey M. Hudson
ArXivPDFHTML
Abstract

This work presents a new classifier that is specifically designed to be fully interpretable. This technique determines the probability of a class outcome, based directly on probability assignments measured from the training data. The accuracy of the predicted probability can be improved by measuring more probability estimates from the training data to create a series expansion that refines the predicted probability. We use this work to classify four standard datasets and achieve accuracies comparable to that of Random Forests. Because this technique is interpretable by design, it is capable of determining the combinations of features that contribute to a particular classification probability for individual cases as well as the weightings of each of combination of features.

View on arXiv
Comments on this paper