ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.09340
11
17

Non-Projective Dependency Parsing with Non-Local Transitions

25 October 2017
Daniel Fernández-González
Carlos Gómez-Rodríguez
ArXivPDFHTML
Abstract

We present a novel transition system, based on the Covington non-projective parser, introducing non-local transitions that can directly create arcs involving nodes to the left of the current focus positions. This avoids the need for long sequences of No-Arc transitions to create long-distance arcs, thus alleviating error propagation. The resulting parser outperforms the original version and achieves the best accuracy on the Stanford Dependencies conversion of the Penn Treebank among greedy transition-based algorithms.

View on arXiv
Comments on this paper