A Multiscale Patch Based Convolutional Network for Brain Tumor Segmentation

This article presents a multiscale patch based convolutional neural network for the automatic segmentation of brain tumors in multi-modality 3D MR images. We use multiscale deep supervision and inputs to train a convolutional network. We evaluate the effectiveness of the proposed approach on the BRATS 2017 segmentation challenge where we obtained dice scores of 0.755, 0.900, 0.782 and 95% Hausdorff distance of 3.63mm, 4.10mm, and 6.81mm for enhanced tumor core, whole tumor and tumor core respectively.
View on arXiv