30
8

A Multiscale Patch Based Convolutional Network for Brain Tumor Segmentation

Abstract

This article presents a multiscale patch based convolutional neural network for the automatic segmentation of brain tumors in multi-modality 3D MR images. We use multiscale deep supervision and inputs to train a convolutional network. We evaluate the effectiveness of the proposed approach on the BRATS 2017 segmentation challenge where we obtained dice scores of 0.755, 0.900, 0.782 and 95% Hausdorff distance of 3.63mm, 4.10mm, and 6.81mm for enhanced tumor core, whole tumor and tumor core respectively.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.