ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.02310
31
5

Detecting the Moment of Completion: Temporal Models for Localising Action Completion

6 October 2017
Farnoosh Heidarivincheh
Majid Mirmehdi
Dima Damen
ArXivPDFHTML
Abstract

Action completion detection is the problem of modelling the action's progression towards localising the moment of completion - when the action's goal is confidently considered achieved. In this work, we assess the ability of two temporal models, namely Hidden Markov Models (HMM) and Long-Short Term Memory (LSTM), to localise completion for six object interactions: switch, plug, open, pull, pick and drink. We use a supervised approach, where annotations of pre-completion and post-completion frames are available per action, and fine-tuned CNN features are used to train temporal models. Tested on the Action-Completion-2016 dataset, we detect completion within 10 frames of annotations for ~75% of completed action sequences using both temporal models. Results show that fine-tuned CNN features outperform hand-crafted features for localisation, and that observing incomplete instances is necessary when incomplete sequences are also present in the test set.

View on arXiv
Comments on this paper