23
45

The Energy Complexity of Broadcast

Abstract

Energy is often the most constrained resource in networks of battery-powered devices, and as devices become smaller, they spend a larger fraction of their energy on communication (transceiver usage) not computation. As an imperfect proxy for true energy usage, we define energy complexity to be the number of time slots a device transmits/listens; idle time and computation are free. In this paper we investigate the energy complexity of fundamental communication primitives such as broadcast in multi-hop radio networks. We consider models with collision detection (CD) and without (No-CD), as well as both randomized and deterministic algorithms. Some take-away messages from this work include: 1. The energy complexity of broadcast in a multi-hop network is intimately connected to the time complexity of leader election in a single-hop (clique) network. Many existing lower bounds on time complexity immediately transfer to energy complexity. For example, in the CD and No-CD models, we need Ω(logn)\Omega(\log n) and Ω(log2n)\Omega(\log^2 n) energy, respectively. 2. The energy lower bounds above can almost be achieved, given sufficient (Ω(n)\Omega(n)) time. In the CD and No-CD models we can solve broadcast using O(lognloglognlogloglogn)O(\frac{\log n\log\log n}{\log\log\log n}) energy and O(log3n)O(\log^3 n) energy, respectively. 3. The complexity measures of Energy and Time are in conflict, and it is an open problem whether both can be minimized simultaneously. We give a tradeoff showing it is possible to be nearly optimal in both measures simultaneously. For any constant ϵ>0\epsilon>0, broadcast can be solved in O(D1+ϵlogO(1/ϵ)n)O(D^{1+\epsilon}\log^{O(1/\epsilon)} n) time with O(logO(1/ϵ)n)O(\log^{O(1/\epsilon)} n) energy, where DD is the diameter of the network.

View on arXiv
Comments on this paper