ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.09586
15
1

Case Study: Explaining Diabetic Retinopathy Detection Deep CNNs via Integrated Gradients

27 September 2017
Linyi Li
Matt Fredrikson
S. Sen
Anupam Datta
    FAtt
ArXivPDFHTML
Abstract

In this report, we applied integrated gradients to explaining a neural network for diabetic retinopathy detection. The integrated gradient is an attribution method which measures the contributions of input to the quantity of interest. We explored some new ways for applying this method such as explaining intermediate layers, filtering out unimportant units by their attribution value and generating contrary samples. Moreover, the visualization results extend the use of diabetic retinopathy detection model from merely predicting to assisting finding potential lesions.

View on arXiv
Comments on this paper