ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.08810
54
36
v1v2 (latest)

Addressing Challenging Place Recognition Tasks using Generative Adversarial Networks

26 September 2017
Yasir Latif
Ravi Garg
Michael Milford
Ian Reid
    GAN
ArXiv (abs)PDFHTML
Abstract

Place recognition is an essential component of Simultaneous Localization And Mapping (SLAM). Under severe appearance change, reliable place recognition is a difficult perception task since the same place is perceptually very different in the morning, at night, or over different seasons. This work addresses place recognition as a domain translation task. Using a pair of coupled Generative Adversarial Networks (GANs), we show that it is possible to generate the appearance of one domain (such as summer) from another (such as winter) without requiring image-to-image correspondences across the domains. Mapping between domains is learned from sets of images in each domain without knowing the instance-to-instance correspondence by enforcing a cyclic consistency constraint. In the process, meaningful feature spaces are learned for each domain, the distances in which can be used for the task of place recognition. Experiments show that learned features correspond to visual similarity and can be effectively used for place recognition across seasons.

View on arXiv
Comments on this paper