ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.08463
41
47
v1v2 (latest)

Improving Viability of Electric Taxis by Taxi Service Strategy Optimization: A Big Data Analysis of New York City

25 September 2017
Chien-Ming Tseng
Sid Chi-Kin Chau
ArXiv (abs)PDFHTML
Abstract

Electrification of transportation is critical for a low-carbon society. In particular, public vehicles (e.g., taxis) provide a crucial opportunity for electrification. Despite the benefits of eco-friendliness and energy efficiency, adoption of electric taxis faces several obstacles, including constrained driving range, long recharging duration, limited charging stations and low gas price, all of which impede taxi drivers' decisions to switch to electric taxis. On the other hand, the popularity of ride-hailing mobile apps facilitates the computerization and optimization of taxi service strategies, which provide computer-assisted decisions of navigation and roaming for taxi drivers to locate potential customers. This paper examines the viability of electric taxis with the assistance of taxi service strategy optimization, in comparison with conventional taxis with internal combustion engines. A big data analysis is provided using a large dataset of real-world taxi trips in New York City. Our methodology is to first model the computerized taxi service strategy by Markov Decision Process (MDP), and then devise the optimized taxi service strategy based on NYC taxi trip dataset. The profitability of electric taxi drivers is studied empirically under various battery capacity and charging conditions. Consequently, we shed light on the solutions that can improve viability of electric taxis.

View on arXiv
Comments on this paper