ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.05788
9
87

StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection

18 September 2017
Sanghyun Woo
Soonmin Hwang
In So Kweon
    ObjD
ArXivPDFHTML
Abstract

One-stage object detectors such as SSD or YOLO already have shown promising accuracy with small memory footprint and fast speed. However, it is widely recognized that one-stage detectors have difficulty in detecting small objects while they are competitive with two-stage methods on large objects. In this paper, we investigate how to alleviate this problem starting from the SSD framework. Due to their pyramidal design, the lower layer that is responsible for small objects lacks strong semantics(e.g contextual information). We address this problem by introducing a feature combining module that spreads out the strong semantics in a top-down manner. Our final model StairNet detector unifies the multi-scale representations and semantic distribution effectively. Experiments on PASCAL VOC 2007 and PASCAL VOC 2012 datasets demonstrate that StairNet significantly improves the weakness of SSD and outperforms the other state-of-the-art one-stage detectors.

View on arXiv
Comments on this paper