ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.05436
20
0
v1v2v3 (latest)

Scene-centric Joint Parsing of Cross-view Videos

16 September 2017
Qi
Yuanlu Xu
Tao Yuan
Tianfu Wu
Song-Chun Zhu
ArXiv (abs)PDFHTML
Abstract

Cross-view video understanding is an important yet under-explored area in computer vision. In this paper, we introduce a joint parsing framework that integrates view-centric proposals into scene-centric parse graphs that represent a coherent scene-centric understanding of cross-view scenes. Our key observations are that overlapping fields of views embed rich appearance and geometry correlations and that knowledge fragments corresponding to individual vision tasks are governed by consistency constraints available in commonsense knowledge. The proposed joint parsing framework represents such correlations and constraints explicitly and generates semantic scene-centric parse graphs. Quantitative experiments show that scene-centric predictions in the parse graph outperform view-centric predictions.

View on arXiv
Comments on this paper