30
18

Imitation Learning for Vision-based Lane Keeping Assistance

Christopher Innocenti
Henrik Lindén
G. Panahandeh
Lennart Svensson
Nasser Mohammadiha
Abstract

This paper aims to investigate direct imitation learning from human drivers for the task of lane keeping assistance in highway and country roads using grayscale images from a single front view camera. The employed method utilizes convolutional neural networks (CNN) to act as a policy that is driving a vehicle. The policy is successfully learned via imitation learning using real-world data collected from human drivers and is evaluated in closed-loop simulated environments, demonstrating good driving behaviour and a robustness for domain changes. Evaluation is based on two proposed performance metrics measuring how well the vehicle is positioned in a lane and the smoothness of the driven trajectory.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.