ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.03570
28
5

A KL-LUCB Bandit Algorithm for Large-Scale Crowdsourcing

11 September 2017
Bob Mankoff
Robert D. Nowak
Ervin Tánczos
ArXiv (abs)PDFHTML
Abstract

This paper focuses on best-arm identification in multi-armed bandits with bounded rewards. We develop an algorithm that is a fusion of lil-UCB and KL-LUCB, offering the best qualities of the two algorithms in one method. This is achieved by proving a novel anytime confidence bound for the mean of bounded distributions, which is the analogue of the LIL-type bounds recently developed for sub-Gaussian distributions. We corroborate our theoretical results with numerical experiments based on the New Yorker Cartoon Caption Contest.

View on arXiv
Comments on this paper