ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.03196
23
10

Deep multi-frame face super-resolution

10 September 2017
E. Ustinova
Victor Lempitsky
    SupR
    CVBM
ArXivPDFHTML
Abstract

Face verification and recognition problems have seen rapid progress in recent years, however recognition from small size images remains a challenging task that is inherently intertwined with the task of face super-resolution. Tackling this problem using multiple frames is an attractive idea, yet requires solving the alignment problem that is also challenging for low-resolution faces. Here we present a holistic system for multi-frame recognition, alignment, and superresolution of faces. Our neural network architecture restores the central frame of each input sequence additionally taking into account a number of adjacent frames and making use of sub-pixel movements. We present our results using the popular dataset for video face recognition (YouTube Faces). We show a notable improvement of identification score compared to several baselines including the one based on single-image super-resolution.

View on arXiv
Comments on this paper