47
133

An Analysis of ISO 26262: Using Machine Learning Safely in Automotive Software

Abstract

Machine learning (ML) plays an ever-increasing role in advanced automotive functionality for driver assistance and autonomous operation; however, its adequacy from the perspective of safety certification remains controversial. In this paper, we analyze the impacts that the use of ML as an implementation approach has on ISO 26262 safety lifecycle and ask what could be done to address them. We then provide a set of recommendations on how to adapt the standard to accommodate ML.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.