ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.02291
20
7

Basic Filters for Convolutional Neural Networks Applied to Music: Training or Design?

7 September 2017
M. Dörfler
Thomas Grill
Roswitha Bammer
A. Flexer
ArXivPDFHTML
Abstract

When convolutional neural networks are used to tackle learning problems based on music or, more generally, time series data, raw one-dimensional data are commonly pre-processed to obtain spectrogram or mel-spectrogram coefficients, which are then used as input to the actual neural network. In this contribution, we investigate, both theoretically and experimentally, the influence of this pre-processing step on the network's performance and pose the question, whether replacing it by applying adaptive or learned filters directly to the raw data, can improve learning success. The theoretical results show that approximately reproducing mel-spectrogram coefficients by applying adaptive filters and subsequent time-averaging is in principle possible. We also conducted extensive experimental work on the task of singing voice detection in music. The results of these experiments show that for classification based on Convolutional Neural Networks the features obtained from adaptive filter banks followed by time-averaging perform better than the canonical Fourier-transform-based mel-spectrogram coefficients. Alternative adaptive approaches with center frequencies or time-averaging lengths learned from training data perform equally well.

View on arXiv
Comments on this paper