ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.02249
21
97

Uncertainty-Aware Learning from Demonstration using Mixture Density Networks with Sampling-Free Variance Modeling

3 September 2017
Sungjoon Choi
Kyungjae Lee
Sungbin Lim
Songhwai Oh
ArXivPDFHTML
Abstract

In this paper, we propose an uncertainty-aware learning from demonstration method by presenting a novel uncertainty estimation method utilizing a mixture density network appropriate for modeling complex and noisy human behaviors. The proposed uncertainty acquisition can be done with a single forward path without Monte Carlo sampling and is suitable for real-time robotics applications. The properties of the proposed uncertainty measure are analyzed through three different synthetic examples, absence of data, heavy measurement noise, and composition of functions scenarios. We show that each case can be distinguished using the proposed uncertainty measure and presented an uncertainty-aware learn- ing from demonstration method of an autonomous driving using this property. The proposed uncertainty-aware learning from demonstration method outperforms other compared methods in terms of safety using a complex real-world driving dataset.

View on arXiv
Comments on this paper