ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.01782
11
25

Automatic Document Image Binarization using Bayesian Optimization

6 September 2017
Ekta Vats
A. Hast
Prashant Singh
ArXivPDFHTML
Abstract

Document image binarization is often a challenging task due to various forms of degradation. Although there exist several binarization techniques in literature, the binarized image is typically sensitive to control parameter settings of the employed technique. This paper presents an automatic document image binarization algorithm to segment the text from heavily degraded document images. The proposed technique uses a two band-pass filtering approach for background noise removal, and Bayesian optimization for automatic hyperparameter selection for optimal results. The effectiveness of the proposed binarization technique is empirically demonstrated on the Document Image Binarization Competition (DIBCO) and the Handwritten Document Image Binarization Competition (H-DIBCO) datasets.

View on arXiv
Comments on this paper