13
21

Estimating graph parameters with random walks

Abstract

An algorithm observes the trajectories of random walks over an unknown graph GG, starting from the same vertex xx, as well as the degrees along the trajectories. For all finite connected graphs, one can estimate the number of edges mm up to a bounded factor in O(trel3/4m/d)O\left(t_{\mathrm{rel}}^{3/4}\sqrt{m/d}\right) steps, where trelt_{\mathrm{rel}} is the relaxation time of the lazy random walk on GG and dd is the minimum degree in GG. Alternatively, mm can be estimated in O(tunif+trel5/6n)O\left(t_{\mathrm{unif}} +t_{\mathrm{rel}}^{5/6}\sqrt{n}\right), where nn is the number of vertices and tunift_{\mathrm{unif}} is the uniform mixing time on GG. The number of vertices nn can then be estimated up to a bounded factor in an additional O(tunifmn)O\left(t_{\mathrm{unif}}\frac{m}{n}\right) steps. Our algorithms are based on counting the number of intersections of random walk paths X,YX,Y, i.e. the number of pairs (t,s)(t,s) such that Xt=YsX_t=Y_s. This improves on previous estimates which only consider collisions (i.e., times tt with Xt=YtX_t=Y_t). We also show that the complexity of our algorithms is optimal, even when restricting to graphs with a prescribed relaxation time. Finally, we show that, given either mm or the mixing time of GG, we can compute the "other parameter" with a self-stopping algorithm.

View on arXiv
Comments on this paper