ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.00611
36
30

A Recurrent Encoder-Decoder Approach with Skip-filtering Connections for Monaural Singing Voice Separation

2 September 2017
S. I. Mimilakis
K. Drossos
Tuomas Virtanen
G. Schuller
ArXivPDFHTML
Abstract

The objective of deep learning methods based on encoder-decoder architectures for music source separation is to approximate either ideal time-frequency masks or spectral representations of the target music source(s). The spectral representations are then used to derive time-frequency masks. In this work we introduce a method to directly learn time-frequency masks from an observed mixture magnitude spectrum. We employ recurrent neural networks and train them using prior knowledge only for the magnitude spectrum of the target source. To assess the performance of the proposed method, we focus on the task of singing voice separation. The results from an objective evaluation show that our proposed method provides comparable results to deep learning based methods which operate over complicated signal representations. Compared to previous methods that approximate time-frequency masks, our method has increased performance of signal to distortion ratio by an average of 3.8 dB.

View on arXiv
Comments on this paper