ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.00201
55
287

DeepUNet: A Deep Fully Convolutional Network for Pixel-level Sea-Land Segmentation

1 September 2017
Ruirui Li
Wenjie Liu
Lei Yang
Shihao Sun
Wei Hu
Fan Zhang
Wei Li
    SSeg
ArXiv (abs)PDFHTML
Abstract

Semantic segmentation is a fundamental research in remote sensing image processing. Because of the complex maritime environment, the sea-land segmentation is a challenging task. Although the neural network has achieved excellent performance in semantic segmentation in the last years, there are a few of works using CNN for sea-land segmentation and the results could be further improved. This paper proposes a novel deep convolution neural network named DeepUNet. Like the U-Net, its structure has a contracting path and an expansive path to get high resolution output. But differently, the DeepUNet uses DownBlocks instead of convolution layers in the contracting path and uses UpBlock in the expansive path. The two novel blocks bring two new connections that are U-connection and Plus connection. They are promoted to get more precise segmentation results. To verify our network architecture, we made a new challenging sea-land dataset and compare the DeepUNet on it with the SegNet and the U-Net. Experimental results show that DeepUNet achieved good performance compared with other architectures, especially in high-resolution remote sensing imagery.

View on arXiv
Comments on this paper