ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.00127
24
18

Low Permutation-rank Matrices: Structural Properties and Noisy Completion

1 September 2017
Nihar B. Shah
Sivaraman Balakrishnan
Martin J. Wainwright
ArXivPDFHTML
Abstract

We consider the problem of noisy matrix completion, in which the goal is to reconstruct a structured matrix whose entries are partially observed in noise. Standard approaches to this underdetermined inverse problem are based on assuming that the underlying matrix has low rank, or is well-approximated by a low rank matrix. In this paper, we propose a richer model based on what we term the "permutation-rank" of a matrix. We first describe how the classical non-negative rank model enforces restrictions that may be undesirable in practice, and how and these restrictions can be avoided by using the richer permutation-rank model. Second, we establish the minimax rates of estimation under the new permutation-based model, and prove that surprisingly, the minimax rates are equivalent up to logarithmic factors to those for estimation under the typical low rank model. Third, we analyze a computationally efficient singular-value-thresholding algorithm, known to be optimal for the low-rank setting, and show that it also simultaneously yields a consistent estimator for the low-permutation rank setting. Finally, we present various structural results characterizing the uniqueness of the permutation-rank decomposition, and characterizing convex approximations of the permutation-rank polytope.

View on arXiv
Comments on this paper