ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.08687
24
107

Performance Guaranteed Network Acceleration via High-Order Residual Quantization

29 August 2017
Zefan Li
Bingbing Ni
Wenjun Zhang
Xiaokang Yang
Wen Gao
    MQ
ArXivPDFHTML
Abstract

Input binarization has shown to be an effective way for network acceleration. However, previous binarization scheme could be regarded as simple pixel-wise thresholding operations (i.e., order-one approximation) and suffers a big accuracy loss. In this paper, we propose a highorder binarization scheme, which achieves more accurate approximation while still possesses the advantage of binary operation. In particular, the proposed scheme recursively performs residual quantization and yields a series of binary input images with decreasing magnitude scales. Accordingly, we propose high-order binary filtering and gradient propagation operations for both forward and backward computations. Theoretical analysis shows approximation error guarantee property of proposed method. Extensive experimental results demonstrate that the proposed scheme yields great recognition accuracy while being accelerated.

View on arXiv
Comments on this paper