30
26

Deep Learning Sparse Ternary Projections for Compressed Sensing of Images

Abstract

Compressed sensing (CS) is a sampling theory that allows reconstruction of sparse (or compressible) signals from an incomplete number of measurements, using of a sensing mechanism implemented by an appropriate projection matrix. The CS theory is based on random Gaussian projection matrices, which satisfy recovery guarantees with high probability; however, sparse ternary {0, -1, +1} projections are more suitable for hardware implementation. In this paper, we present a deep learning approach to obtain very sparse ternary projections for compressed sensing. Our deep learning architecture jointly learns a pair of a projection matrix and a reconstruction operator in an end-to-end fashion. The experimental results on real images demonstrate the effectiveness of the proposed approach compared to state-of-the-art methods, with significant advantage in terms of complexity.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.