ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.08245
16
179

Digital image splicing detection based on Markov features in QDCT and QWT domain

28 August 2017
Ruxin Wang
Wei Lu
Shijun Xiang
Xianfeng Zhao
Jinwei Wang
ArXivPDFHTML
Abstract

Image splicing detection is of fundamental importance in digital forensics and therefore has attracted increasing attention recently. In this paper, a color image splicing detection approach is proposed based on Markov transition probability of quaternion component separation in quaternion discrete cosine transform (QDCT) domain and quaternion wavelet transform (QWT) domain. Firstly, Markov features of the intra-block and inter-block between block QDCT coefficients are obtained from the real part and three imaginary parts of QDCT coefficients respectively. Then, additional Markov features are extracted from luminance (Y) channel in quaternion wavelet transform domain to characterize the dependency of position among quaternion wavelet subband coefficients. Finally, ensemble classifier (EC) is exploited to classify the spliced and authentic color images. The experiment results demonstrate that the proposed approach can outperforms some state-of-the-art methods.

View on arXiv
Comments on this paper