ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.08221
14
115

walk2friends: Inferring Social Links from Mobility Profiles

28 August 2017
Michael Backes
Mathias Humbert
Jun Pang
Yang Zhang
    AAML
ArXivPDFHTML
Abstract

The development of positioning technologies has resulted in an increasing amount of mobility data being available. While bringing a lot of convenience to people's life, such availability also raises serious concerns about privacy. In this paper, we concentrate on one of the most sensitive information that can be inferred from mobility data, namely social relationships. We propose a novel social relation inference attack that relies on an advanced feature learning technique to automatically summarize users' mobility features. Compared to existing approaches, our attack is able to predict any two individuals' social relation, and it does not require the adversary to have any prior knowledge on existing social relations. These advantages significantly increase the applicability of our attack and the scope of the privacy assessment. Extensive experiments conducted on a large dataset demonstrate that our inference attack is effective, and achieves between 13% to 20% improvement over the best state-of-the-art scheme. We propose three defense mechanisms -- hiding, replacement and generalization -- and evaluate their effectiveness for mitigating the social link privacy risks stemming from mobility data sharing. Our experimental results show that both hiding and replacement mechanisms outperform generalization. Moreover, hiding and replacement achieve a comparable trade-off between utility and privacy, the former preserving better utility and the latter providing better privacy.

View on arXiv
Comments on this paper