15
17

Maximum A Posteriori Estimation of Distances Between Deep Features in Still-to-Video Face Recognition

Abstract

The paper deals with the still-to-video face recognition for the small sample size problem based on computation of distances between high-dimensional deep bottleneck features. We present the novel statistical recognition method, in which the still-to-video recognition task is casted into Maximum A Posteriori estimation. In this method we maximize the joint probabilistic density of the distances to all reference still images. It is shown that this likelihood can be estimated with the known asymptotically normal distribution of the Kullback-Leibler discriminations between nonnegative features. The experimental study with the LFW (Labeled Faces in the Wild), YTF (YouTube Faces) and IJB-A (IARPA Janus Benchmark A) datasets has been provided. We demonstrated, that the proposed approach can be applied with the state-of-the-art deep features and dissimilarity measures. Our algorithm achieves 3-5% higher accuracy when compared with conventional aggregation of decisions obtained for all frames.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.