ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.06345
30
38

Robust Optimal Planning and Control of Non-Periodic Bipedal Locomotion with A Centroidal Momentum Model

19 August 2017
Ye Zhao
B. Fernández
Luis Sentis
ArXivPDFHTML
Abstract

This study presents a theoretical method for planning and controlling agile bipedal locomotion based on robustly tracking a set of non-periodic keyframe states. Based on centroidal momentum dynamics, we formulate a hybrid phase-space planning and control method which includes the following key components: (i) a step transition solver that enables dynamically tracking non-periodic keyframe states over various types of terrains, (ii) a robust hybrid automaton to effectively formulate planning and control algorithms, (iii) a steering direction model to control the robot's heading, (iv) a phase-space metric to measure distance to the planned locomotion manifolds, and (v) a hybrid control method based on the previous distance metric to produce robust dynamic locomotion under external disturbances. Compared to other locomotion methodologies, we have a large focus on non-periodic gait generation and robustness metrics to deal with disturbances. Such focus enables the proposed control method to robustly track non-periodic keyframe states over various challenging terrains and under external disturbances as illustrated through several simulations.

View on arXiv
Comments on this paper