ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.05239
14
10

Pseudo-extended Markov chain Monte Carlo

17 August 2017
Christopher Nemeth
Fredrik Lindsten
Maurizio Filippone
J. Hensman
ArXivPDFHTML
Abstract

Sampling from posterior distributions using Markov chain Monte Carlo (MCMC) methods can require an exhaustive number of iterations, particularly when the posterior is multi-modal as the MCMC sampler can become trapped in a local mode for a large number of iterations. In this paper, we introduce the pseudo-extended MCMC method as a simple approach for improving the mixing of the MCMC sampler for multi-modal posterior distributions. The pseudo-extended method augments the state-space of the posterior using pseudo-samples as auxiliary variables. On the extended space, the modes of the posterior are connected, which allows the MCMC sampler to easily move between well-separated posterior modes. We demonstrate that the pseudo-extended approach delivers improved MCMC sampling over the Hamiltonian Monte Carlo algorithm on multi-modal posteriors, including Boltzmann machines and models with sparsity-inducing priors.

View on arXiv
Comments on this paper