ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.04403
37
22

Theoretical Foundation of Co-Training and Disagreement-Based Algorithms

15 August 2017
Wei Wang
Zhi Zhou
ArXiv (abs)PDFHTML
Abstract

Disagreement-based approaches generate multiple classifiers and exploit the disagreement among them with unlabeled data to improve learning performance. Co-training is a representative paradigm of them, which trains two classifiers separately on two sufficient and redundant views; while for the applications where there is only one view, several successful variants of co-training with two different classifiers on single-view data instead of two views have been proposed. For these disagreement-based approaches, there are several important issues which still are unsolved, in this article we present theoretical analyses to address these issues, which provides a theoretical foundation of co-training and disagreement-based approaches.

View on arXiv
Comments on this paper