ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.02237
13
7

Image Quality Assessment Techniques Show Improved Training and Evaluation of Autoencoder Generative Adversarial Networks

6 August 2017
Michael O. Vertolli
J. Davies
    GAN
ArXivPDFHTML
Abstract

We propose a training and evaluation approach for autoencoder Generative Adversarial Networks (GANs), specifically the Boundary Equilibrium Generative Adversarial Network (BEGAN), based on methods from the image quality assessment literature. Our approach explores a multidimensional evaluation criterion that utilizes three distance functions: an l1l_1l1​ score, the Gradient Magnitude Similarity Mean (GMSM) score, and a chrominance score. We show that each of the different distance functions captures a slightly different set of properties in image space and, consequently, requires its own evaluation criterion to properly assess whether the relevant property has been adequately learned. We show that models using the new distance functions are able to produce better images than the original BEGAN model in predicted ways.

View on arXiv
Comments on this paper