EndNet: Sparse AutoEncoder Network for Endmember Extraction and Hyperspectral Unmixing

Data acquired from multi-channel sensors is a highly valuable asset to interpret the environment for a variety of remote sensing applications. However, low spatial resolution is a critical limitation for the sensors and the constituent materials of a scene can be mixed in different fractions due to their spatial interactions. Spectral unmixing is a technique that allows us to obtain the material spectral signatures with their fractions from data. In this paper, we propose a novel hyperspectral unmixing scheme, called EndNet, that is based on a two-staged autoencoder network. This well-known structure is completely enhanced and restructured by introducing additional layers and a projection metric (i.e spectral angle distance (SAD) instead of inner product) to achieve an optimum solution. Moreover, we present a novel loss function that is composed of Kullback-Leibler divergence term with SAD similarity and additional penalty terms to improve the sparsity of the estimates. These modifications enable us to set the common properties of endmembers such as nonlinearity and sparsity for autoencoder networks. Lastly, due to the stochastic-gradient based approach, the method is scalable for large-scale data and it can be accelerated on Graphical Processing Units (GPUs). To demonstrate the superiority of our method, we conduct extensive experiments on several wellknown datasets. The obtained results confirm that our method considerably improves the performance compared to the state-of-the-art techniques in literature.
View on arXiv