ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.01318
14
4

The UMD Neural Machine Translation Systems at WMT17 Bandit Learning Task

3 August 2017
Amr Sharaf
Shi Feng
Khanh Nguyen
Kianté Brantley
Hal Daumé
ArXivPDFHTML
Abstract

We describe the University of Maryland machine translation systems submitted to the WMT17 German-English Bandit Learning Task. The task is to adapt a translation system to a new domain, using only bandit feedback: the system receives a German sentence to translate, produces an English sentence, and only gets a scalar score as feedback. Targeting these two challenges (adaptation and bandit learning), we built a standard neural machine translation system and extended it in two ways: (1) robust reinforcement learning techniques to learn effectively from the bandit feedback, and (2) domain adaptation using data selection from a large corpus of parallel data.

View on arXiv
Comments on this paper