ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.00801
33
20

Dependency Grammar Induction with Neural Lexicalization and Big Training Data

2 August 2017
Wenjuan Han
Yong Jiang
Kewei Tu
    AI4CE
ArXivPDFHTML
Abstract

We study the impact of big models (in terms of the degree of lexicalization) and big data (in terms of the training corpus size) on dependency grammar induction. We experimented with L-DMV, a lexicalized version of Dependency Model with Valence and L-NDMV, our lexicalized extension of the Neural Dependency Model with Valence. We find that L-DMV only benefits from very small degrees of lexicalization and moderate sizes of training corpora. L-NDMV can benefit from big training data and lexicalization of greater degrees, especially when enhanced with good model initialization, and it achieves a result that is competitive with the current state-of-the-art.

View on arXiv
Comments on this paper