ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.00197
30
64

Video Object Segmentation with Re-identification

1 August 2017
Xiaoxiao Li
Yuankai Qi
Zhe Wang
Kai-xiang Chen
Ziwei Liu
Jianping Shi
Ping Luo
Xiaoou Tang
Chen Change Loy
    VOS
ArXivPDFHTML
Abstract

Conventional video segmentation methods often rely on temporal continuity to propagate masks. Such an assumption suffers from issues like drifting and inability to handle large displacement. To overcome these issues, we formulate an effective mechanism to prevent the target from being lost via adaptive object re-identification. Specifically, our Video Object Segmentation with Re-identification (VS-ReID) model includes a mask propagation module and a ReID module. The former module produces an initial probability map by flow warping while the latter module retrieves missing instances by adaptive matching. With these two modules iteratively applied, our VS-ReID records a global mean (Region Jaccard and Boundary F measure) of 0.699, the best performance in 2017 DAVIS Challenge.

View on arXiv
Comments on this paper