ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.08184
13
178

Efficient Low Rank Tensor Ring Completion

23 July 2017
Wenqi Wang
Vaneet Aggarwal
Shuchin Aeron
ArXivPDFHTML
Abstract

Using the matrix product state (MPS) representation of the recently proposed tensor ring decompositions, in this paper we propose a tensor completion algorithm, which is an alternating minimization algorithm that alternates over the factors in the MPS representation. This development is motivated in part by the success of matrix completion algorithms that alternate over the (low-rank) factors. In this paper, we propose a spectral initialization for the tensor ring completion algorithm and analyze the computational complexity of the proposed algorithm. We numerically compare it with existing methods that employ a low rank tensor train approximation for data completion and show that our method outperforms the existing ones for a variety of real computer vision settings, and thus demonstrate the improved expressive power of tensor ring as compared to tensor train.

View on arXiv
Comments on this paper