ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.07381
23
76

Group-wise Deep Co-saliency Detection

24 July 2017
Lina Wei
Shanshan Zhao
Omar Elfarouk Bourahla
Xi Li
Fei Wu
ArXivPDFHTML
Abstract

In this paper, we propose an end-to-end group-wise deep co-saliency detection approach to address the co-salient object discovery problem based on the fully convolutional network (FCN) with group input and group output. The proposed approach captures the group-wise interaction information for group images by learning a semantics-aware image representation based on a convolutional neural network, which adaptively learns the group-wise features for co-saliency detection. Furthermore, the proposed approach discovers the collaborative and interactive relationships between group-wise feature representation and single-image individual feature representation, and model this in a collaborative learning framework. Finally, we set up a unified end-to-end deep learning scheme to jointly optimize the process of group-wise feature representation learning and the collaborative learning, leading to more reliable and robust co-saliency detection results. Experimental results demonstrate the effectiveness of our approach in comparison with the state-of-the-art approaches.

View on arXiv
Comments on this paper