ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.07265
15
11

Composing Distributed Representations of Relational Patterns

23 July 2017
Sho Takase
Naoaki Okazaki
Kentaro Inui
    CoGe
ArXivPDFHTML
Abstract

Learning distributed representations for relation instances is a central technique in downstream NLP applications. In order to address semantic modeling of relational patterns, this paper constructs a new dataset that provides multiple similarity ratings for every pair of relational patterns on the existing dataset. In addition, we conduct a comparative study of different encoders including additive composition, RNN, LSTM, and GRU for composing distributed representations of relational patterns. We also present Gated Additive Composition, which is an enhancement of additive composition with the gating mechanism. Experiments show that the new dataset does not only enable detailed analyses of the different encoders, but also provides a gauge to predict successes of distributed representations of relational patterns in the relation classification task.

View on arXiv
Comments on this paper