ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.05553
17
16

Spectral Filter Tracking

18 July 2017
Zhen Cui
Youyi Cai
Wen ming Zheng
Jian Yang
ArXivPDFHTML
Abstract

Visual object tracking is a challenging computer vision task with numerous real-world applications. Here we propose a simple but efficient Spectral Filter Tracking (SFT)method. To characterize rotational and translation invariance of tracking targets, the candidate image region is models as a pixelwise grid graph. Instead of the conventional graph matching, we convert the tracking into a plain least square regression problem to estimate the best center coordinate of the target. But different from the holistic regression of correlation filter based methods, SFT can operate on localized surrounding regions of each pixel (i.e.,vertex) by using spectral graph filters, which thus is more robust to resist local variations and cluttered background.To bypass the eigenvalue decomposition problem of the graph Laplacian matrix L, we parameterize spectral graph filters as the polynomial of L by spectral graph theory, in which L k exactly encodes a k-hop local neighborhood of each vertex. Finally, the filter parameters (i.e., polynomial coefficients) as well as feature projecting functions are jointly integrated into the regression model.

View on arXiv
Comments on this paper