ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.05116
22
25

To Normalize, or Not to Normalize: The Impact of Normalization on Part-of-Speech Tagging

17 July 2017
Rob van der Goot
Barbara Plank
Malvina Nissim
ArXivPDFHTML
Abstract

Does normalization help Part-of-Speech (POS) tagging accuracy on noisy, non-canonical data? To the best of our knowledge, little is known on the actual impact of normalization in a real-world scenario, where gold error detection is not available. We investigate the effect of automatic normalization on POS tagging of tweets. We also compare normalization to strategies that leverage large amounts of unlabeled data kept in its raw form. Our results show that normalization helps, but does not add consistently beyond just word embedding layer initialization. The latter approach yields a tagging model that is competitive with a Twitter state-of-the-art tagger.

View on arXiv
Comments on this paper