ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.04084
25
34
v1v2v3 (latest)

An Earthworm-Inspired Soft Crawling Robot Controlled by Friction

12 July 2017
Joey Z. Ge
Ariel A. Calderón
N. O. Pérez-Arancibia
ArXiv (abs)PDFHTML
Abstract

We present the modeling, design, fabrication and feedback control of an earthworm-inspired soft robot capable of crawling on surfaces by actively manipulating the frictional force between its body and the surface. Earthworms are segmented worms composed of repeating units known as metameres. The muscle and setae structure embedded in each individual metamere makes possible its peristaltic locomotion both under and above ground. Here, we propose a pneumatically-driven soft robotic system made of parts analogous to the muscle and setae structure and can replicate the crawling motion of a single earthworm metamere. A model is also introduced to describe the crawling dynamics of the proposed robotic system and proven be controllable. Robust crawling locomotion is then experimentally verified.

View on arXiv
Comments on this paper