28
13

Estimating the unseen from multiple populations

Abstract

Given samples from a distribution, how many new elements should we expect to find if we continue sampling this distribution? This is an important and actively studied problem, with many applications ranging from unseen species estimation to genomics. We generalize this extrapolation and related unseen estimation problems to the multiple population setting, where population jj has an unknown distribution DjD_j from which we observe njn_j samples. We derive an optimal estimator for the total number of elements we expect to find among new samples across the populations. Surprisingly, we prove that our estimator's accuracy is independent of the number of populations. We also develop an efficient optimization algorithm to solve the more general problem of estimating multi-population frequency distributions. We validate our methods and theory through extensive experiments. Finally, on a real dataset of human genomes across multiple ancestries, we demonstrate how our approach for unseen estimation can enable cohort designs that can discover interesting mutations with greater efficiency.

View on arXiv
Comments on this paper