ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.02688
23
10

A General Framework for Enhancing Sparsity of Generalized Polynomial Chaos Expansions

10 July 2017
Xiu Yang
Xiaoliang Wan
Lin Lin
H. Lei
ArXivPDFHTML
Abstract

Compressive sensing has become a powerful addition to uncertainty quantification when only limited data is available. In this paper we provide a general framework to enhance the sparsity of the representation of uncertainty in the form of generalized polynomial chaos expansion. We use alternating direction method to identify new sets of random variables through iterative rotations such that the new representation of the uncertainty is sparser. Consequently, we increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method. We demonstrate that the previously developed iterative method to enhance the sparsity of Hermite polynomial expansion is a special case of this general framework. Moreover, we use Legendre and Chebyshev polynomials expansions to demonstrate the effectiveness of this method with applications in solving stochastic partial differential equations and high-dimensional (O(100)) problems.

View on arXiv
Comments on this paper