ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.00679
48
2

Talking Condition Identification Using Second-Order Hidden Markov Models

1 July 2017
I. Shahin
ArXiv (abs)PDFHTML
Abstract

This work focuses on enhancing the performance of text-dependent and speaker-dependent talking condition identification systems using second-order hidden Markov models (HMM2s). Our results show that the talking condition identification performance based on HMM2s has been improved significantly compared to first-order hidden Markov models (HMM1s). Our talking conditions in this work are neutral, shouted, loud, angry, happy, and fear.

View on arXiv
Comments on this paper